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概要
Khovanov–Lauda, Rouquierにより導入された箙 Hecke代数は，圏化理論や Schur–Weyl双
対性を介して Lie 代数，量子群の表現論，構造論と結びつき，現在大きく発展している．特に
Schur–Weyl 双対性との関連で重要な対称箙 Hecke 代数の表現論においては，再正規化 R 行列
と呼ばれる表現の射が中心的な役割を果たす．本稿では，対称箙 Hecke代数のスーパー代数類似
である対称箙 Hecke–Clifford スーパー代数の表現論について，Schur–Weyl 双対への応用や再
正規化 R行列を用いた表現論の研究について述べる．

1 導入
Schur–Weyl双対性は，Lie群や Lie代数の表現論と有限群の表現論などを関連させて双方向的に

研究することを可能にするという点で，非常に強力かつ興味深い現象である．最も古典的な例は，一
般線形 Lie代数 gln(k)と対称群 Sd に関する次の主張である．

定理 1.1. kを標数 0の代数閉体とする．このとき，W = (kn)⊗d には互いに可換な gln(k),Sd の左
作用が入り，U(gln(k))⊗ k[Sd]加群として次のように既約分解する．

W =
⊕

λ⊢d, l(λ)≤n

V (λ)⊗ Sλ.

ここで，V (λ) は最高ウェイト λ の既約 gln(k) 加群，Sλ は λ に自然に対応する Sd の既約加群
(Specht加群)である．

Schur–Weyl双対性は，gln(k)だけではなくその “相方”である Sd にも目を向けることによって
重要な情報がもたらされるという指導原理を我々に与える．
この主張を雛形に，Schur–Weyl 双対性は非常に多くの一般化，類似の構成が試みられてきた．

1 つの一般化の方向性として，(簡約)Lie 代数をアフィン化，または量子化したときに，うまく “

相方” を見出すことにより Schur–Weyl 双対性を構築できないか？という問題がよく考察される．
Jimbo[5] による Uq(gln) に対する Schur–Weyl 双対や Chari–Pressley[2] による Uq(ŝln) に対する
Schur–Weyl双対など，この発想は非常に多くの成果を生んだが，基本的にその “相方”の発見およ
び Schur–Weyl双対の構築は，Lie代数の分類理論に基づいて個別具体的になされることが多く，統
一理論のようなものは長らく存在しなかった．
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近年 Kang–Kashiwara–Kim[6]により，一般の量子アフィン代数に対する Schur–Weyl双対性が，
箙 Hecke 代数を用いることで構築された．ここでは A

(1)
n−1 (n ≥ 2)型量子アフィン代数に対する結

果を例示する．

定理 1.2 ([6, Theorem 3.3]). g = ŝln を A
(1)
n−1 型アフィン Lie 代数，U ′

q(g) を g に関する量子ア
フィン代数*1とする．このとき，U ′

q(g) の標準加群の正規化 R 行列から A∞ 型対称箙 Hecke 代数
の族 {Rβ}β∈Q+ が構成でき，さらに標準加群のアフィン化の完備化テンソル積の有限直和として，
(U ′

q(g), Rβ) 両側加群 V̂ ⊗β を構成できる．さらに，この両側加群は次の完全モノイダル関手を誘導
する． ⊕

β∈Q+

V̂ ⊗β ⊗Rβ
− :

⊕
β∈Q+

Rβ-gmod → U ′
q(g)-mod.

もう 1つの一般化として，Lie代数をスーパー Lie代数に置き換えるという方向性が考えられる．
単純スーパー Lie 代数の分類は Kac[9] によりなされ，その一部は単純 Lie 代数の直接的な一般化
と捉えられるが，そうではないものであって Schur–Weyl 双対が構築可能であるものがいくつか存
在する．その中でも特に興味深いのが，Sergeev[13] によるクイヤースーパー Lie 代数 qn に対する
Schur–Weyl双対である．

定理 1.3 ([13],[4, Theorem 3.49]). kを標数 0の代数閉体とする．このとき，W = (kn|n)⊗d には互
いに (スーパー)可換な qn(k),Hd の左作用が入り，U(qn(k)) ⊗Hd 加群として次のように既約分解
する．

W =
⊕

λ∈SPd, l(λ)≤n

V (λ)⊛Dλ.

ここで，V (λ)は最高ウェイト λの既約 qn(k)加群，Dλ は λに自然に対応する Hd の既約加群であ
り，V (λ)⊛Dλ は V (λ)⊗Dλ の既約部分加群である．

この定理は一般線形スーパー Lie代数 glm|n(k)に対する Schur–Weyl 双対に手を加え，k[Sd]を
拡大した Sergeevスーパー代数Hd を “相方”として見出すことにより示すことができる．
これまでに挙げた 2つの一般化を組み合わせて考えれば，Sergeevスーパー代数を構成する要領で

箙 Hecke代数をうまく拡大した代数系を考えることにより，qn に対する Schur–Weyl双対の量子ア
フィン類似が得られるのではないかと期待できる．本稿ではそのような構成をうまく実現した代数
系として，Kang–Kashiwara–Tsuchioka[7]により導入された箙 Hecke–Cliffordスーパー代数を紹介
し，それを用いた Schur–Weyl双対とその表現論に対する考察について紹介する．

2 箙 Hecke代数
まずは箙 Hecke代数について説明しよう．元々箙 Hecke代数は，対称化可能な Kac–Moody Lie

代数 gに対する量子群の負部分 U−
q (g)を圏化するために導入された代数である．

ここで代数の量子化について軽く説明しておく．代数 Aの量子化とは，標語的には，パラメータの
役割をする不定元 q を伴った代数 {Aq}であって “極限”q 7→ 1をとると Aが復元されるようなもの

*1 正確には次数作用素を抜いた版の量子アフィン代数に相当する．



である．対称化可能な Kac–Moody Lie代数 gに対して，それと全く同じ表現論を持つ代数 U(g)(普
遍包絡代数という)を作ることができ，その量子化 Uq(g)も得られる．これを gの量子群という．
Khovanov–Lauda[8]，Rouquier[12]による圏化定理の具体的な主張はおおよそ次のようにまとめ
ることができる．

定理 2.1 ([8, Proposition 3.18],[12, Proposition 4.2]). 任意に対称化可能な Cartan データ
(A,P,Π, P∨,Π∨)を固定し，これを用いて量子群 Uq(g)，箙 Hecke代数の族 {Rβ}β∈Q+ を構成して
おく．このとき，Q(q)代数としての次の同型が成り立つ．

U−
q (g) ' Q(q)⊗Z[q±1]

⊕
β∈Q+

K(Rβ-gproj)

この箙 Hecke代数 Rβ は Z次数付き代数なので，加群としても次数付き加群を考えるのが自然で
ある．次数付き有限生成射影加群と次数を保つ射全体の圏を Rβ-gprojで表していて，K(Rβ-gproj)

はその Grothendieck群である．
Lie理論におけるこのような圏化定理の源流となっているのは，Ariki[1]による A型円分 Hecke代

数を用いた U(ŝln)のとある既約表現の圏化定理である．これをもって，A型アフィン Hecke代数を
任意の型に一般化するような Z次数付き代数の存在が示唆され，それが箙 Hecke代数の発見につな
がったのである．
導入で述べたように Chari–Pressley[2] によれば Uq(ŝln) と A 型アフィン Hecke 代数との間には

Schur–Weyl 双対があるのであった．圏化定理に対する大幅な一般化が箙 Hecke 代数に対して成功
したのだから，アフィン量子群に対する Schur–Weyl双対も箙 Hecke代数を用いて一般的に構築可
能なのではないだろうか，という期待が生じる．さらに言えば，量子アフィン代数の表現に対して行
うことができる操作が箙 Hecke代数の表現の側でも可能であり，それらが Schur–Weyl関手と整合
的であればとても嬉しい．
この問いに肯定的に答えたのが，先述した Kang–Kashiwara–Kim[6] による Schur–Weyl 双対定

理である．これによれば対称箙 Hecke代数の表現論と量子アフィン代数の表現論が完全かつモノイ
ダルな Schur–Weyl関手によって強く結びついていることが観察できる．量子アフィン代数のある種
の表現に対してはアフィン化という操作や正規化 R行列と呼ばれる特別な加群の射が存在するのだ
が，対応する構成を行うためには対称な箙 Hecke代数を用いる必要がある．そのため，Schur–Weyl

双対を考える上では箙 Hecke代数に対称であることを課すことは自然であると考えられる．

3 スーパー Lie代数とその一般化
Lie 代数の自然な一般化であるスーパー Lie 代数について簡単に説明する．これは与えられた

Z/2Z次数に基づいて Lie代数の関係式を捻ったものとして理解される．

定義 3.1. g = g0 ⊕ g1 を体 k上の Z/2Z次数付きベクトル空間，[−,−] : g× g → gを双線形写像と
する．x ∈ gi のとき xは斉次であるといい，i = par(x)と書くことにする．(g, [−,−])がスーパー
Lie代数であるとは，任意の斉次な gの元に対して次が満たされることをいう．

(i) [x, y] = −(−1)par(x) par(y)[y, x],



(ii) [a, [b, c]] = [[a, b], c] + (−1)par(a) par(b)[b, [a, c]].

Lie代数の満たすべき関係式は次のものであったことを思い出そう．

(i) [x, y] = −[y, x],

(ii) [a, [b, c]] = [[a, b], c] + [b, [a, c]].

スーパー Lie 代数としての Lie 代数とは，g1 = 0 であるようなスーパー Lie 代数 g のことである．
より一般に，スーパー Lie代数 gに対し，部分空間 g0 は Lie代数である．一方で，gの Z/2Z次数
を忘れたものは一般には Lie代数ではない．本稿で重要なスーパー Lie代数の例は次の 2つである．

例 3.2. V = km ⊕ kn を V の Z/2Z 次数付けとする．V 上の線形写像全体 Endk(V ) を glm|n =

gl(V )と表すことにすると，これは次のようなスーパー代数構造を持つ．

gl(V ) = gl(V )0 ⊕ gl(V )1,

gl(V )i = {f ∈ glm|n(k) | f(Vj) ⊂ Vi+j},

[f, g] = fg − (−1)par(f) par(g)gf (f, g は斉次).

これを一般線形スーパー Lie代数 (general linear Lie superalgebra) という．n = 0の場合は
一般線形 Lie代数に一致する．

例 3.3. V = kn ⊕ kn を V の Z/2Z次数付けとする．一般線形スーパー Lie代数 gln|n の元 J を

J =
√
−1

[
0 In

−In 0

]
と定める．ここで In は n次単位行列であり，行列の区分けは V の次数付けに則したものである．こ
れを用いて gln|n の部分空間 qn を

qn = {f ∈ gln|n | [f, J ] = 0}

と定めると，これは [−,−]の制限で閉じている．すなわち qn は gln|n の部分スーパー Lie代数であ
る．これをクイヤースーパー Lie 代数 (queer Lie superalgebra) という．glm|n とは異なり qn

に対しては n = 0 とすることが意味を持たないので，qn はスーパー Lie 代数の理論固有の対象で
ある．

Lie理論における古典的な結果として Dynkin図形による単純 Lie代数の分類理論は非常に有名で
あり，その類似として単純スーパー Lie代数の分類も行われている ([9])．glm|n, qn の部分商として
単純スーパー Lie代数の無限系列を構成することができ，それぞれ A型，Q型単純スーパー Lie代
数と呼ばれる．
導入で触れたとおり glm|n, qn に対しては Schur–Weyl 双対が構築可能であることが知られてお

り，これにより glm|n, qn の有限次元多項式表現の圏は半単純になることがわかる．(classicalな)単
純スーパー Lie代数の中でこの性質を満たすものは glm|n, qn の他には osp(1|2m) (m ≥ 1)しか知ら



れていない*2(Ehrig–Stroppel)．この意味で glm|n, qn は非常に興味深い対象である．
単純 Lie 代数の拡張理論として，1 変数ローラン多項式環をテンソルすることにより得られるア
フィン Lie代数と，それらの普遍包絡環を量子変形することにより得られる量子群が重要である．
スーパー Lie 代数に対する類似の拡張として，ここでは Kuniba–Okado–Sergeev[11] により導入

された一般化 A型アフィン量子群 U(ϵ)を紹介する．これは glm|n の量子アフィン化のさらなる一般
化である．

例 3.4. ϵ = (ϵ1, . . . , ϵn) を n 個の Z/2Z の元の組とし，これを用いて添字集合 I = {0 < · · · <
n− 1} = Ieven t Iodd の Z/2Z次数付け I = Ieven t Iodd を決める．これに対し，k上の Z/2Z次数付
き代数 U(ϵ)が，kµ, ei, fi (µ ∈ P, 0 ≤ i ≤ n − 1)により生成され然るべき関係式を満たすものとし
て定義される．
各生成元は斉次であり，その次数は次のように定める．

par(kµ) = 0, par(ei) = par(fi) =

{
0 if i ∈ Ieven,

1 if i ∈ Iodd.

U(ϵ)を A型一般化アフィン量子群という．

関係式は複雑なので割愛した．ϵ = (0, . . . , 0, 1, . . . , 1)の場合が U ′
q(ŝlm|n)に対応する．

導入で触れた Kang–Kashiwara–Kim[6]による Schur–Weyl双対と同様の構成が U(ϵ)に対して一
般化できることが Kwon–Lee[10]により示されている．

定理 3.5 ([10, Proposition 5.4]). U(ϵ) の標準加群の正規化 R 行列から A∞ 型対称箙 Hecke 代数
の族 {Rβ}β∈Q+ が構成でき，さらに標準加群のアフィン化の完備化テンソル積の有限直和として
(U ′

q(g), Rβ) 両側加群 V̂ ⊗β を構成できる．さらに，この両側加群は次の完全モノイダル関手を誘導
する． ⊕

β∈Q+

V̂ ⊗β ⊗Rβ
− :

⊕
β∈Q+

Rβ-gmod → C(ϵ).

ここで C(ϵ)は U(ϵ)の “多項式表現”全体のなす圏である．

この関手によりそれぞれの圏の単純対象の間に対応が得られ，その対応はそれぞれの単純対象の構
成および分類と整合することが知られている．

4 対称箙 Hecke–Cliffordスーパー代数
Kang–Kashiwara–Tsuchioka[7]により，箙 Hecke代数のスーパー代数類似と捉えられる 2種類の

スーパー代数が与えられた．箙 Heckeスーパー代数と箙 Hecke–Cliffordスーパー代数である．

定義 4.1 ([7]). 一般化スーパー Cartanデータ (A,P,Π, P∨,Π∨)を固定する．Cartan行列 Aの添
字集合 I は I = Ieven t Iodd と次数付けられている．これに対し箙Heckeスーパー代数 Rβ が，斉
次な生成元 e(ν), xi, τk (ν ∈ Iβ , 1 ≤ i ≤ htβ, 1 ≤ k < htβ)により生成され，然るべき関係式を満

*2 osp(1|2m)はより広く有限次元表現の圏が完全可約であり，glm|n, qn の場合とも事情が異なる例外である．



たす代数として定義される．ここで，各生成元の Z/2Z次数は次のように定義される．

par(e(ν)) = 0, par(xie(ν)) = par(νi), par(τke(ν)) = par(νk) par(νk+1)

箙 Heckeスーパー代数が対称であるとき，添字集合 I の次数付けは I = Ieven の形しかあり得ず，
これより生成元の次数は全て 0になる．すなわち，対称な箙 Heckeスーパー代数は単なる箙 Hecke

代数である．

定義 4.2 ([7]). 一般化 (スーパー)Cartanデータ (A,P,Π, P∨,Π∨)を固定する．Cartan行列 Aの
添字集合 I の次数付け I = Ieven t Iodd を用いて新たに添字集合 J = Ieven × {0, 1} t Iodd × {0}
を作る．これに対し箙 Hecke–Clifford スーパー代数 RCβ が，斉次な生成元 e(ν), xi, ci, τk (ν ∈
Jβ , 1 ≤ i ≤ htβ, 1 ≤ k < htβ) により生成され，然るべき関係式を満たす代数として定義される．
ここで，各生成元の Z/2Z次数は次のように定義される．

par(e(ν)) = par(xi) = par(τk) = 0, par(ci) = 1

箙 Hecke スーパー代数の場合とは異なり，対称箙 Hecke–Clifford スーパー代数は非自明なスー
パー代数構造を持つ．筆者は本当の意味でスーパー代数の理論が登場する Schur–Weyl 双対定理に
興味があるため，本稿では対称箙 Hecke–Cliffordスーパー代数の表現論について考える．

5 主結果
対称箙 Hecke代数が持つ大きな特徴として表現のアフィン化や R行列の存在があり，同様の構成

が箙 Hecke–Cliffordスーパー代数に対しても可能なのではないかという疑問が必然的に生じる．筆
者はこの点について研究を行い，対称箙 Hecke–Cliffordスーパー代数の表現に対してもアフィン化，
R行列の構成が可能であることを示した．

命題 5.1. M ∈ RCβ-sgModに対し，空間Mz を

Mz = k[z]⊗k M

とすると，Mz には RCβ の作用が定義できる．これをM のアフィン化という．

ここで，RCβ-sgMod は (Z,Z/2Z) 次数付き加群の圏である．アフィン化に対する R 行列を用い
ることにより，次のような 0ではない加群の射を構成することができる．

命題 5.2. M ∈ RCβ-sgmod, N ∈ RCγ-sgmodを 0ではない有限次元次数付き加群としたとき，そ
れらのテンソル積の上に次のような 0ではない RCβ+γ 加群の射が存在する．

rM,N , r′M,N : M ◦N → N ◦M

これらを再正規化R行列という．

箙 Hecke代数に対しても rM,N , r′M,N が定義され，これらはスカラー倍を除いて一致することが知
られているが，箙 Hecke–Cliffordスーパー代数についても一致するかは未だわかっていない．



一方で，再正規化 R行列を用いて既約表現のテンソル積の構造を調べることにより，実既約表現
と呼ばれるものに対しては 2つの再正規化 R行列がスカラー倍を除いて一致することを示すことが
できる．

定理 5.3. Mi ∈ RCβi -sgmod (i = 1, 2)は既約で，どちらかは実既約であるとする．このとき，
HOMRCβ1+β2

(M1 ◦M2,M2 ◦M1) = k.rM1,M2

である．特に，r′M1,M2
∈ k×rM1,M2 である．

これらの結果は，箙 Hecke–Cliffordスーパー代数の表現論においても，量子アフィン (スーパー)

代数の表現論に類似した構成が可能であることを示している．
これを受けて，筆者は U(ϵ)に対する Schur–Weyl双対に手を加えることにより，qn の量子アフィ

ン化に対応すると思しき U(ϵ)の部分代数に対する Schur–Weyl双対を構築した．

定理 5.4. U(ϵ) のベクトル表現 W1,ϵ 上の奇な対合射 P を固定する．任意の β ∈ Q+ に対して P

と End(V ′⊗β
O ) 内でスーパー可換な元全体のなす U(ϵ) の部分代数を U(ϵ)P，End(V tw⊗β

O ) 内で変換
T ◦ P とスーパー可換な元全体のなす U(ϵ)の部分代数を U tw(ϵ)P とすると，以下の両側加群

U(ϵ)P ↷V ′⊗β
O ↶ RCβ ,

U tw(ϵ)P ↷V tw⊗β
O ↶ RCβ

が構成でき，これはそれぞれの有限次元加群の間の関手を誘導する．
FP

ϵ =
⊕
β

V ′⊗β
O ⊗RCβ

− :
⊕
β

RCβ-sgmod → U(ϵ)P -smod,

F twP
ϵ =

⊕
β

V tw⊗β
O ⊗RCβ

− :
⊕
β

RCβ-sgmod → U tw(ϵ)P -smod.

ここで，変換 T とは有理式 f(z) ∈ k((z−a)) (
∃
a ∈ k×)に対し，f(z) ↔ f(z−1)とする変換である．

また，これらの関手の基本性質としてモノイダル完全性が成り立つことも示した．

定理 5.5. 上の関手 FP
ϵ ,F twP

ϵ はモノイダル完全関手である．すなわち，任意の Mi ∈
RCβi -sgmod (i = 1, 2)に対し，以下が成り立つ．

FP
ϵ (M1 ◦M2) ' FP

ϵ (M1)⊗FP
ϵ (M2),

F twP
ϵ (M1 ◦M2) ' F twP

ϵ (M1)⊗F twP
ϵ (M2).

qn の量子アフィン化として Chen–Guay[3]によりねじれ Q型量子アフィンスーパー代数 Uq(q̂
tw
n )

が提出されているが，Uq(q̂
tw
n )のベクトル表現のアフィン化の上の標準的な奇対合射として T ◦ J が

とれる．筆者はここで与えた構成法を用いることで Uq(q̂
tw
n ) に対する Schur–Weyl 双対を与えるこ

とができると期待している*3．

*3 Uq(q̂
tw
n ) とアフィン Hecke–Clifford スーパー代数との Schur–Weyl 双対はすでに [3] により与えられており，[7] に

よれば箙 Hecke–Cliffordスーパー代数とアフィン Hecke–Cliffordスーパー代数の関係性は，ちょうど箙 Hecke代数
とアフィン Hecke代数の関係性と同じものであることがわかる．[2]による Schur–Weyl双対が [6]により一般化され
た流れと同様のことが [3] による Uq(q̂

tw
n ) に対する Schur–Weyl 双対に対しても起きることを期待することは自然で

あろう．
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